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Abstract

Sensor networks have emerged as a fundamentally new tool for moni-
toring spatially distributed phenomena. This paper investigates a strategy
by which sensor nodes detect and estimate non-localized phenomena such
as “boundaries” and “edges” (e.g., temperature gradients, variations in
illumination or contamination levels). A general class of boundaries, with
mild regularity assumptions, is considered, and theoretical bounds on the
achievable performance of sensor network based boundary estimation are
established. A hierarchical boundary estimation algorithm is proposed
that achieves a near-optimal balance between mean-squared error and en-
ergy consumption.

1 Introduction
Sensor networks have emerged as a fundamentally new tool for monitoring inac-
cessible environments such as non-destructive evaluation of buildings and struc-
tures; contaminant tracking in the environment; habitat monitoring in the jun-
gle; and surveillance in military zones. These ad hoc networks are envisioned to
be a collection of embedded sensors, actuators and processors. We shall assume
that communication between sensors is done in a wireless fashion. Sensor net-
works are distinguished from more classical networks due to strict limitations on
energy consumption, the density of nodes, the simplicity of the processing power
of nodes and possibly high environmental dynamics. An important problem in
sensor networking applications is boundary estimation. Consider a network sens-
ing a field composed of two or more regions of distinct behavior (e.g., differing
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mean values for the sensor measurements). An example of such a field is de-
picted in Figure 1(a). Boundary estimation is the process of determining the
delineation between homogeneous regions.

There are two fundamental limitations in the boundary estimation problem.
First, the accuracy of a boundary estimate is limited by the spatial density of
sensors in the network and by the amount of noise associated with the mea-
surement process. Second, energy constraints may limit the complexity of the
boundary estimate that is ultimately transmitted to a desired destination. The
trade-off between accuracy and energy consumption can be characterized as fol-
lows. Assume that n sensor nodes are arranged on an

√
n ×

√
n square lattice

(assuming a planar, square sensor field). Suppose that the field being sensed
consists of two homogeneous regions separated by a one-dimensional boundary
(like the case depicted in Figure 1(a)). A broad class of boundaries is considered
in this paper. Specifically, we only assume that the boundary is a Lipschitz
function[6, 3] or, more generally, has a box-counting dimension of one [9]. This
class includes linear boundaries and other parametric curves, but also includes
boundaries that cannot be described parametrically.

Each sensor node makes a (noisy) measurement of the field. Under these
assumptions, there will be O(

√
n) nodes lying on the boundary. The boundary

nodes provide a description of the boundary to within a resolution of 1/
√

n.
Noise present in the measurements limits the achievable accuracy of a bound-
ary estimate. It is known that, under the assumptions on the class of bound-
aries above, the mean-square error (MSE) cannot, in general, decay faster than
O(1/

√
n) [6, 3]. That is, no estimator (based on centralized or distributed pro-

cessing) can exceed this convergence speed-limit. It is important to point out
that if one restricts the class of boundaries, then faster decay rates are certainly
possible. For example, if one assumes that the boundary is a line, then the
problem is a parametric estimation problem and the rate of decay is O(1/n).
Assuming a line or parametric curve is, of course, very restrictive (and proba-
bly unreasonable for natural phenomena), and therefore this paper focuses on a
much more general class of boundaries.

To quantify the total energy required to transmit a boundary estimate of
this accuracy, note that each boundary node must send one message to the
desired destination (indicating that it is on the boundary). Thus, the total
energy required to transmit the boundary description is O(

√
n). Combining

these results yields a fundamental trade-off between accuracy and energy of the
form

MSE ∼ 1
Energy

.

This tradeoff does not take into consideration the additional energy required to
determine whether a sensor is in fact a boundary. It is important to note that
this relation should not be interpreted to mean that a fixed number of sensor
nodes using more energy can provide more accuracy. Rather, both the MSE and
the energy consumption are functions of the number of sensor nodes, and the
above relation indicates how the accuracy and energy consumption behave as
the density of nodes increases. Also, note that if a boundary can be described
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parametrically, then the energy required to transmit the description is propor-
tional to the number of parameters, and does not depend on n. However, as
discussed above, the aim here is to avoid such restrictive parametric assump-
tions. The boundaries of interest may not admit exact parametric descriptions,
and therefore the accuracy of the boundary description and transmission cost
both grow as density of nodes increases.

This paper explores the basic trade-off between MSE and energy consump-
tion, as functions of node density. We propose and develop a boundary es-
timation algorithm based on multiscale partitioning methods. The algorithm
is quite practical and maps nicely onto a sensor network architecture. More-
over, we demonstrate theoretically that our method nearly achieves the optimal
MSE/Energy trade-off discussed above. The theory hinges on an application
of our extension [5] of the Li-Barron bound for complexity regularized model
selection [8] to bound the MSE and on a recent concentration inequality for
chi-squared distributions to bound the expected energy consumption [7]. Since
our method (nearly) achieves the optimal trade-off above, no other scheme can
be devised that will (asymptotically) perform significantly better. Simulation
experiments verify the predicted theoretical performance of our method.

1.1 Related Work
Due to the nascence of sensor network research, there is a limited literature
concerning boundary estimation for such networks. At first glance, boundary
estimation (or boundary detection) has goals that are similar to that of edge
detection in image processing. However, a major distinction exists. Due to en-
ergy constraints, processing the entire “image” simultaneously is impractical,
and hence a single node does not have access to all of the sensor measurements.
In [2], several techniques based on averaging and thresholds are developed and
compared for boundary detection. All of the techniques rely on the collection of
measurements from sensor neighbors within a probing radius, R. The authors
note that the performance of their methods will improve as the probing radius
increases at the expense of communication cost. To contrast with our approach,
we systematically increase the probing radius, however our communication cost
does not increase as O(R2) due to the fact that lower dimensional statistics
(versus all measurements) are passed to nodes within the sensor network hierar-
chy; and, furthermore, messages are only passed to clusterheads rather than all
nodes.

The data collection algorithm in [4] shares many features with our proposed
boundary estimation method. A hierarchical compression scheme is considered
where clusterheads aggregate measurements from children nodes and then pass
signal estimates to the next layer in the hieararchy. Our objective, herein, is to
analytically determine the estimation capability of a tree-based boundary esti-
mation scheme which is penalized by communication costs. We note that the
scheme of [4] does not explicitly optimze the description of the phenomena being
encoded (in our case, a boundary) and thus suffers in terms of the error between
the estimated boundary and the true boundary; however, the communication
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(a) (b) (c) (d)

Figure 1: Sensing an inhomogeneous field. (a) Points are sensor locations. The
environment has two conditions indicated by the gray and white regions of the
square. (b) the sensor network domain is partitioned into square cells. (c) Sen-
sors within the network operate collaboratively to determine a pruned partition
that matches the boundary. (d) Final approximation to the boundary between
the two regions which is transmitted to a remote point.

cost is lessened. With our scheme, we can systematically tradeoff between com-
munication cost and reconstruction error by increasing the penalty associated
with communication.

2 Problem Formulation and Approach
The basic problem is illustrated in Figure 1. Our objective is to consider mea-
surements from a collection of sensors and determine the boundary between two
fields of relatively homogeneous measurements.

We presume a hierarchical structure of “clusterheads” (see e.g. [4]) which
manage measurements from nodes below them in the hierarchy. Thus, the nodes
in each square of the partition communicate their measurements to a clusterhead
in the square. Index the squares at the finest scale by row and column (i, j).
The clusterhead in square (i, j) computes the average of these measurements to
obtain a value xi,j ∼ N

(
µi,j ,

σ2

mi,j

)
, where µi,j is the mean value, σ2 is the noise

variance for each sensor measurement, and mi,j is the number of nodes in square
(i, j). Thus we assume sensor measurements that have a Gaussian distribution.
For simplicity, we assume mi,j = 1. The random distribution is to account for
noise in the system as well as for the small probability of node failure (outlier
measurements).

Our approach to the boundary estimation problem is to devise a hierarchi-
cal processing strategy that enables the nodes to collaboratively determine a
non-uniform rectangular partition of the sensor domain that is adapted to the
boundaries. Specifically, the desired partition will have high, fine resolution
along the boundary, and low, coarse resolution in homogeneous regions of the
field, as depicted in Figure 1. The partition effectively provides a “staircase”-like
approximation to the boundary. Similar strategies have been recently investi-
gated to handle edges in images [3, 10] and decision boundaries in classification
problems [9]. The advantage of our approach is that, under mild conditions
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on the smoothness of the boundary curve, we can establish upper bounds on
the MSE of the estimator using theoretical tools we have developed in previous
work. These upper bounds can be used to tune the trade-off between data fitting
and the complexity of the boundary estimate. The complexity of the boundary
estimate relates directly to energy consumption in the network.

Our approach is as follows. Let us take the sensor domain to be the unit
square [0, 1]2. Partition the domain into n sub-squares of sidelength 1√

n
, as

shown in Figure 1(b). The sidelength 1√
n

is the finest resolution of our analysis.
In principle, this initial partition can be generated by a a recursive dyadic parti-
tion (RDP). First divide the domain into four sub-squares of equal size. Repeat
this process again on each sub-square. Repeat this 1/2 log2 n = J times. This
gives rise to a complete RDP of resolution 1√

n
(the rectangular partition of the

sensing domain shown above in Figure 1(b)). The RDP process can represented
with a quadtree structure. The quadtree can be pruned back to produce an
RDP with non-uniform resolution as shown in Figure 1(c). The key issues are:
(1) How to implement the pruning process in the sensor network; (2) How to
determine the best pruned tree. Here, we discuss the first issue, and the second
issue will be investigated in later sections of the paper.

Let Pn denote the set of all RDPs, including the initial complete RDP and
all possible prunings. For each RDP P ∈ Pn, there is an associated quadtree
structure (generally of non-uniform depth corresponding to the non-uniform res-
olution of most RDPs). The leafs of each quadtree represent dyadic (sidelength
equal to a negative power of 2) square regions of the associated partition. For a
given RDP and quadtree, each sensor node belongs to a certain dyadic square.
We consider these squares “clusters” and assume that one of the nodes in each
square serves as a “clusterhead,” which will assimilate information from the other
nodes in the square. Notice that if one considers all RDPs in Pn, then each sen-
sor node actually belongs to a nested hierarchy of 1/2 log2 n dyadic squares of
sidelengths 1√

n
, 2√

n
, 4√

n
, . . . , 1, respectively. Thus, we have a hierarchy of clusters

and clusterheads.
Consider a certain RDP P ∈ Pn. Define the estimator of the field as follows.

On each square of the partition, average the measurements from the sensors in
that square and set the estimate of the field to that average value. This results
in a piecewise constant estimate, denoted by θ, of the field. This estimator will
be compared with the data x = {xi,j}. The data themselves are undesirable for
two reasons. First, they are noisy and averaging over larger regions will reduce
the noise. Second, the unprocessed data x will require the maximum amount of
energy to transmit to the destination. Our empirical measure of performance is
the sum-of-squared errors between θ = θ(P ) and the data x = {xi,j}.

R(θ, x) =

√
n∑

i,j=1

(θ(i, j) − xi,j)
2 , (1)
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Define the complexity penalized estimator

θ̂n = arg min
θ(P ):P∈Pn

R(θ(P ), x) + 2σ2p(n)|θ(P )|, (2)

where σ2 is the noise variance, |θ(P )| denotes the total number of squares in
the partition P , and p(n) is a certain monotonically increasing function of n
that discourages unnecessarily high resolution partitions (appropriate choices of
p(n) will be discussed in the sequel). It is well known that the optimization in
(2) can be solved using a bottom-up tree pruning algorithm in O(n) operations
[1, 3, 10]. This is possible because both the sum-of-squared errors and the penalty
are additive functions, and therefore the squared error plus penalty cost can be
separated into terms associated with each individual square of the partition θ.
The hierarchy of clusterheads facilitates this process in the sensor network. At
each level of the hierarchy, the clusterhead receives the best sub-partition/sub-
tree estimates from the four clusterheads below it, and compares the total cost
of these estimates with the cost of the estimate equal to the average of all sensors
in that cluster.

3 Upper Bounds on Achievable Accuracy
We begin by recalling a fundamental upper bound on expected error of complex-
ity penalized estimators, like that in (2). This particular bound was originally
developed for mixture density modeling [8], and we later extended it to more
general settings [5]. Here we state a specialized version of the bound, tailored
to the estimator proposed in (2).

Let Θn denote the set of all possible models of the field. This set contains
piecewise constant models (constant on the dyadic squares corresponding to one
of the partitions in Pn). The constant values are in a prescribed range [−R,R],
and are quantized to k bits. The range corresponds to the upper and lower limits
of the amplitude range of the sensors. The set Θn consists of a finite number
of models (a bound on the number of partitions is derived in the Appendix).
Assume that p(n) satisfies the summability condition (Kraft inequality)

∑

θ∈Θn

e−p(n)|θ| ≤ 1 , (3)

where again |θ| denotes the number of squares (alternatively we shall call this the
number of leafs in the pruned tree description of the boundary) in the partition
θ. It is shown in the Appendix that p(n) ≤ γ log n satisfies (3). Let θ̂n denote
the solution to

θ̂n = arg min
θ∈Θn

R(θ, x) + 2σ2p(n)|θ|, (4)

where, as before, x denotes the array of measurements at the finest scale {xi,j},
and |θ| denotes the number of squares in the partition associated with θ. This
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is essentially the same estimator as defined in (2) except that the values of the
estimate are quantized in this case.

Let θ∗
n denote the true value of the field at resolution 1/

√
n (i.e., θ∗

n(i, j) =
E[xi,j ]). Then, applying Theorem 7 in [5], the MSE of the estimator θ̂n is
bounded above according to

1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2

]
≤

min
θ∈Θn

1
n




2

√
n∑

i,j=1

(θ(i, j) − θ∗
n(i, j))2 + 8σ2p(n)|θ|




 (5)

The upper bound involves two terms. The first term, 2
∑√

n
i,j=1 (θ(i, j) − θ∗

n(i, j))2,
is a bound on the bias or approximation error. The second term, 8σ2p(n)|θ|, is
a bound on the variance or estimation error. The bias term, which measures the
squared error between the best possible model in our class and the true field, is
generally unknown. However, if we make certain assumptions on the smooth-
ness of the boundary, then the rate at which this term decays as function of the
partition size |θ| can be determined.

Assume that the field being sensed is composed of homogeneous regions sep-
arated by a one-dimensional boundary. If the boundary is a Lipschitz function
[3, 10] or more generally has a box-counting dimension (closely related to Haus-
dorf dimension) of 1, then by carefully calibrating quantization and penalization
as discussed in the Appendix (taking k ∼ 1/4 log n and setting p(n) = 2/3 log n)
it follows that

1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2

]
≤ O

(√
log n

n

)
. (6)

This result shows that the MSE decays to zero at a rate of
√

log n/n. This
rate cannot be significantly improved by any estimator. From [3, 6] we know
that for Lipschitz boundaries, the minimax rate is O(1/

√
n), which shows that

our estimator is within a square-root of a logarithmic factor of the best possible
convergence rate. The minimax rate is the fastest rate of convergence achievable
with any estimator (“min”) for the most challenging (“max”) Lipschitz bound-
ary. Faster rates of decay are theoretically possible if one assumes that the
boundary is even smoother. As an extreme case, suppose the boundary can be
exactly described parametrically (e.g., a line). Then the boundary problem is
one of parameter estimation and the rate of convergence is O(1/n). Extensions
of our approach are possible which can take advantage of smoother boundaries,
which may provide convergence rates approaching the parametric rate. These
extensions are part of our ongoing work and will be discussed in Section 6.
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4 Accuracy-Energy Trade-off
A key characteristic of our proposed method is the explicit consideration of the
cost of communication in the construction of the tree describing the boundary.
Energy consumption is defined by two communication costs: the cost of com-
munication due to the construction of the tree (in-network cost) and the cost of
communicating the final boundary estimate (out-of-network cost). We will show
that the expected number of leafs produced by our algorithm is O(

√
n), and that

the in-network and out-of-network energy consumption is proportional to this
number. Recall that the rate of decay for the MSE is MSE ∼

√
log n/n. There-

fore, ignoring the logarithmic factor, the accuracy-energy trade-off required to
achieve this optimal MSE is roughly MSE ∼ 1/Energy. Contrast this trade-
off with that of a naive approach in which each of the n sensors transmits its
data, directly or by multiple hops, to an external point. In this case, the in-
network and out-of-network energy costs are O(n), which lead to the trade-off
MSE ∼ 1/

√
Energy, since we know that no estimator exists that can result in

an MSE decaying faster than O(1/
√

n). Thus, our proposed hierarchical bound-
ary estimation method offers substantial savings over the naive approach while
optimizing the tradeoff between accuracy and complexity of the estimate.

4.1 Out-of-network Communication Cost
It is clear that the out-of-network communication cost is proportional to the final
description of the boundary, thus it is of interest to compute the expected size of
the tree, or E[|θ̂|]. Each decision in the pruning process is based on comparing
the complexity and fitness of an average value to the data in a certain dyadic
square to that of the best subpartition model for that square (passed up from
the bottom).

An upper bound on E[|θ̂|] is derived in the Appendix. The upper bound is
based on the probability of pruning or not pruning at each node for our hierarchi-
cal algorithm. If no boundary is present, then the probability of pruning at each
node can be bounded from above by the tail probability of a certain chi-square
distribution. The chi-square distribution arises from the assumed Gaussian ob-
servation model and the sum-of-squared errors criterion used in pruning. Using
another upper bound for the tail probability, we show in the Appendix that if
no boundary is present in the square under consideration, and with a penalty
p(n) = 2/3 log n, the probability of not pruning tends to zero as n increases.
This implies that E[|θ̂|] → 1 as n → ∞. Thus, for large sensor networks, the ex-
pected number of leafs (partition pieces) in the case where there is no boundary
(simply a homogeneous field) is one.

To consider the inhomogeneous case where a boundary does exist, if the
boundary is a Lipschitz function or has a box counting dimension of 1, there
exists a pruned RDP with at most C ′√n squares (leafs) that includes the O(

√
n)

squares of sidelength 1/
√

n that the boundary passes through (see the Appendix
for a fuller discussion of this property). Thus an upper bound on the number of
leafs required to describe the boundary in the noiseless case is given by C ′√n.
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In the presence of noise, we can use the results above for the homogeneous case
to bound the number of spurious leafs due to noise (zero as n grows); as a
result, for large sensor networks, we can expect at most C ′√n leafs in total.
Thus, the expected energy required to transmit the final boundary description
is Energy = O(

√
n).

4.2 In-network Communication Cost
The in-network communication cost is intimately tied to the expected size of
the final tree, as this value determines how much pruning will occur. We have
seen above that the out-of-network cost is proportional to

√
n and herein we

shall show that the in-network communication cost is also O(
√

n). At each scale
2j/

√
n, j = 0, . . . , 1/2 log2 n − 1, the hierarchical algorithm passes a certain

number of data or averages, nj , corresponding to the number of squares in the
best partition (up to that scale), up the tree to the next scale. We assume that
a constant number of bits k, is transmitted per measurement. These k nj bits
must be transmitted approximately 2j/

√
n meters (assuming the sensor domain

is normalized to 1 square meter). Thus, the total in-network communication
energy in bit-meters is:

E = k

1/2 log2 n−1∑

j=0

nj2j/
√

n.

In the naive approach, nj = n for all j, and therefore E ≈ kn. In the hierarchical
approach, first consider the case when there is no boundary. We have already
seen that in such cases the tree will be pruned at each stage with high probability.
Therefore, nj = n/4j and E ≈ 2k

√
n. Now if a boundary of length C

√
n is

present, then nj ≤ n/4j + C
√

n. This produces E ≤ k(C + 2)
√

n. Thus, we see
that our hierarchical algorithm results in E = O(

√
n).

5 Simulations
We next present representative simulation results on the efficacy of the proposed
boundary estimation algorithm. We considered a host of sensor network densities
observing the same phenomenon. Sensor networks of size 4k for k = 2, · · · , 8
distributed over a square meter were considered. The sensors operated in an
environment with three different noise levels (σ2 = 1, 10, 100). In Figure 2 (a),
we see the mean-squared error (MSE) as a function of the network size (which
relates directly to density). The MSE is averaged over 50 realizations of the noise.
As predicted by the theoretical results, we see the expected decay in MSE. The
in-network communication cost as scaled by the distance traveled is provided in
Figure 2(b). As predicted, this cost is proportional to

√
n. Figure 2(c) shows

the average size of the boundary estimate (number of leafs) as a function of the
network size and a line fit to the data. This plot corresponds to the out-of-
network communication costs. We see that the predicted bounds for both costs

9



σ2 = 100 σ2 = 101 σ2 = 102

(a) (b) (c)

1� 3� 5� 7�

10�5�

10�3�

10�1�

10�1�

J = log� (n)�

M
SE

�

C
om

m
un

ic
at

io
n 

C
os

t�

6.2484 sqrt(n)�

1� 3� 5� 7�

10.0�

46.4�

215.4�

1000.0�

J = log� (n)�

Fi
na

l P
ar

tit
io

n 
Si

ze
�

4.5047 sqrt(n)�

1� 3� 5� 7�

10.0�

46.4�

215.4�

1000.0�

J = log� (n)�

Figure 2: (a)Estimation accuracy as a function of the total number of nodes. (b)
In-network communication cost as a function of the total number of nodes. (c)
Out-of-network communication cost, E[|θ̂|], as a function of the total number of
nodes.

are in fact conservative, and in practice the constant in O(
√

n) is quite modest
(here it is 4 − 6). The final partition size (and hence the communication cost)
decreases as the noise variance increases due to the fact that the overall penalty
is a function of the noise variance. Thus as the noise variance increases, it is
more likely that pruning will occur.

Figure 3 shows single realizations of the boundary estimation process for
three resolutions/sensor network densities. The penalty function employed was
that derived in the Appendix and we see that the resultant boundary estimates
offer the desired tradeoff between accuracy and energy consumption.

6 Conclusions and Ongoing Work
In this work, we have proposed a method for boundary estimation in sensor net-
works. The boundary estimate is determined via complexity regularization of a
hiearchical tree-based estimation method. We demonstrated theoretically that
our method nearly achieves the optimal trade-off MSE ∼ 1/Energy, which shows
that no other scheme can be devised that will (asymptotically) perform signif-
icantly better. Simulation experiments agreed very well with the theoretical
predictions. In future work we plan to investigate more sophisticated bound-
ary estimation techniques based on “wedgelets” [3] and “platelets” [10]. These
methodologies are also based on hierarchical partitions and trees, but have ad-
ditional flexibility which allows for a more parsimonious description of smooth
boundaries and smooth variations in the mean of homogeneous regions. We are
also currently incorporating the effects of imperfect wireless signaling into our
theoretical framework and simulation studies. Finally, we are investigating the
issue of tracking a slowly time-varying boundary.
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7 Appendix

7.1 Number of RDPs in P
Recall the class P of RDPs under consideration (all RDPs resulting from pruning
PJ , the uniform partition of the unit square into n squares of sidelength 1√

n
). In

order to ensure that the Kraft inequality (3) is satisfied, we need to determine
how many RDPs there are in P. More specifically, we will need to know how
many partitions there are with exactly $ squares/leafs. Notice that since the
RDP is based on recursive splits into four, the number of leafs in every partition
in P is of the form $ = 3m+1, for some integer 0 ≤ m ≤ (n−1)/3. The integer m
corresponds to the number of recursive splits. For each RDP having 3m+1 leafs
there is a corresponding partially ordered sequence of m split points (at dyadic
positions in the plane). In general, there are

(n
m

)
≡ n!

(n−m)!m! possible selections
of m points from n (n corresponding to the vertices of the finest resolution
partition, PJ). This number is an upper bound on the number of partitions in
P with $ = 3m + 1 leafs (since RDPs can only have dyadic split points).

7.2 Kraft Inequality
Here we show that with k (recall that k is the number of bits employed per
transmission) and p(n) properly calibrated, we have

∑

θ∈Θn

e−p(n)|θ| ≤ 1 . (7)

Let Θ(m)
n denote the subset of Θn consisting of models based on $ = 3m + 1 leaf

partitions. Begin by writing

∑

θ∈Θn

e−p(n)|θ| =
(n−1)/3∑

m=0

∑

θ∈Θ(m)
n

e−(3m+1)p(n)

≤
(n−1)/3∑

m=0

(
n

m

)
(2k)3m+1e−(3m+1)p(n)

≤
(n−1)/3∑

m=0

nm

m!
(2k)3m+1e−(3m+1)p(n)

=
(n−1)/3∑

m=0

1
m!

e[m log n+(3m+1) log(2k)−(3m+1)p(n)] .
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If A ≡ m log n + (3m + 1) log(2k) − (3m + 1)p(n) < −1 (then eA < e−1) , then
we have

∑

θ∈Θn

e−p(n)|θ| ≤ 1/e

(n−1)/3∑

m=0

1
m!

≤ 1 .

To guarantee A < −1, we must have p(n) growing at least like log n. Therefore,
set p(n) = γ log n, for some γ > 0. Also, as we will see later in the next section,
to guarantee that the quantization of our models is sufficiently fine to contribute
a negligible amount to the overall error we must select 2k ∼ n1/4. With these
calibrations we have

A = [(7/4 − 3γ)m + (1/4 − γ)] log n

In order to guarantee that the MSE converges to zero, we will see in the next
section that m must be a monotonically increasing function of n. Therefore, for
n sufficiently large, the term involving

( 1
4 − γ

)
is negligible, and the condition

A < −1 is satisfied by γ > 7/12. We take γ = 2/3 in practice.

7.3 Rate of MSE Decay
Consider a complete RDP with m2 squares of sidelength 1/m. It is known that
if the boundary is a Lipschitz function, or more generally has a box counting
dimension of 1, then the boundary passes through $ ≤ Cm of the squares, for
some constant C > 0 [3, 10, 9]. Furthermore, there exists a pruned RDP with
at most C ′m leafs, where C ′ = 8(C + 2), that includes the above $ squares of
sidelength 1/m that contain the boundary [3, 9].

Now consider the upper bound (5), which as stated earlier follows as from
an application of Theorem 7 in [5].

1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2

]

≤ min
θ∈Θn

1
n




2

√
n∑

i,j=1

(θ(i, j) − θ∗
n(i, j))2 + 8p(n)|θ|






≤ 2
∫

[0,1]2
(θ − θ∗)2 + 8

7
12

log n

n
C ′m ,

where the discretized squared error is bounded by the corresponding continuous
counterpart. The squared error

∫
[0,1]2(θ − θ∗)2 ∼ K1

m + K2√
n
, where the first term

is due to the error between the 1/m resolution partition along the boundary, and
the 1/

√
n term is due to the quantization error overall. Thus, the MSE behaves

like
MSE ∼ O(1/m) + O(1/

√
n) + O

(
m

log n

n

)
.

Taking m ∼
√

n
log n produces the desired result: MSE ∼ O(

√
log n/n).
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7.4 Expected Tree Size for Homogeneous Field

We construct an upperbound for E[|θ̂|] under the assumption of a homogeneous
field with no boundary. Let P denote the tree-structured partition associated
with θ̂. Note that because P is an RDP it can have d + 1 leafs (pieces in the
partition), where d = 3m, m = 0, . . . , (n−1)/3. Therefore, the expected number
of leafs is given by

E[|θ̂|] =
(n−1)/3∑

m=0

(3m + 1)Pr
(
|θ̂| = 3m + 1

)
.

The probability Pr
(
|θ̂| = 3m + 1

)
can be bounded from above by the probability

that one of the possible partitions with 3m + 1 leafs, m > 0, is chosen in favor
of the trivial partition with just a single leaf. That is, the event that one of the
partitions with 3m + 1 leafs is selected implies that partitions of all other sizes
were not selected, including the trivial partition, from which the upper bound
follows. This upper bound allows us to bound the expected number of leafs as
follows.

E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1)#m pm,

where #m denotes the number of different (3m + 1)-leaf partitions, and pm

denotes the probability that a particular (3m+1)-leaf partition is chosen in favor
of the trivial partition (under the homogeneous assumption). The number #m

can be bounded above by
(n
m

)
, just as in the verification of the Kraft inequality.

The probability pm can be bounded as follows. Note this is the probability
of a particular outcome of a comparison of two models. The comparison is
made between their respective sum-of-squared errors plus complexity penalty,
as given by (2). The single leaf model has a single degree of freedom (mean
value of the entire region), and the alternate model, based on the (3m + 1)-
leaf has 3m + 1 degrees of freedom. Thus, under the assumption that the data
are i.i.d. zero-mean Gaussian distributed with variance σ2, it is easy to verify
that the difference between the sum-of-squared errors of the models (single-leaf
model sum-of-squares minus (3m + 1)-leaf model sum-of-squares) is distributed
as σ2W3m, where W3m is a chi-square distributed random variable with 3m
degrees of freedom (precisely the difference between the degrees of freedom in
the two models). This follows from the fact that the difference of the sum-of-
squared errors is equal to the sum-of-squares of an orthogonal projection of the
data onto a 3m dimensional subspace.

The single-leaf model is rejected if σ2W3m is greater than the difference
between the complexity penalties associated with the two models; that is, if

σ2W3m > (3m + 1)2σ2p(n) − 2σ2p(n) = 6mσ2p(n),

where 2σ2p(n) is the penalty associated with each additional leaf in P . According
to the MSE analysis in the previous section, we require p(n) = γ log n, with
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γ > 7/12. To be concrete, take γ = 2/3, in which case the rejection of the single-
leaf model is equivalent to W3m > 4m log n. The probability of this condition,
pm = Pr(W3m > 4m log n), is bounded from above using Lemma 1 of Laurent
and Massart [7]: If Wd is chi-square distributed with d degrees of freedom, then
for s > 0

Pr(Wd ≥ d + s
√

2d + s2) ≤ e−s2/2.

Making the identification d + s
√

2d + s2 = 4m log n produces the bound

pm = Pr(W3m > 4m log n) ≤ e−2m log n+m
√

3/2(4 log n−3/2).

Combining the upper bounds above, we have

E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
e−2m log n+m

√
3/2(4 log n−3/2),

=
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
n−m e−m log n+m

√
3/2(4 log n−3/2).

For n ≥ 270 the exponent − log n +
√

3/2(4 log n − 3/2) < 0 and therefore

E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
n−m,

≤
(n−1)/3∑

m=0

(3m + 1)
nm

m!
n−m,

≤
(n−1)/3∑

m=0

(3m + 1)/m! < 11.

Furthermore, note that as n → ∞ the exponent − log n+
√

3/2(4 log n − 3/2) →
−∞. This fact implies that the factor e−m log n+m

√
3/2(4 log n−3/2) tends to zero

when m > 0. Therefore, the expected number of leafs E[|θ̂|] → 1 as n → ∞.
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Figure 3: Effect of sensor network density (resolution) on boundary estimation.
Column 1 is the noisy set of measurements, Column 2 is the estimated boundary,
and Column 3 is the associated partition.
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