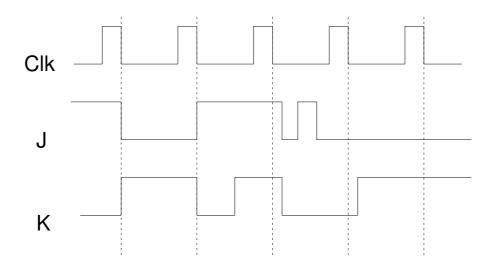

Logique séquentielle

I Bascule J-K

- 1. Montrer qu'une Remise à Un (RAU : Cr=1 et Pr=0) de la bascule J-K ne peut se faire correctement que si $\overline{K} + \overline{C1k} = 1$
- 2. Montrer qu'une Remise à Zéro (RAZ : Cr=0 et Pr=1) de la bascule J-K ne peut se faire correctement que si $\overline{J} + \overline{Clk} = 1$
- 3. Qu'en concluez vous sur l'usage des entrées asynchrones

II Bascule J-K maître-esclave



Nous considérons une bascule J-K maître-esclave dans l'état initial Q=0 et $\bar{Q}=1$

- 1. Que devient Q_M lorsque Clk=1, J=0, K étant dans un état quelconque?
- 2. Que devient Q_M si J passe dans l'état 1?
- 3. Que devient Q_M si J revient dans l'état 0? Qu'en concluez vous ?

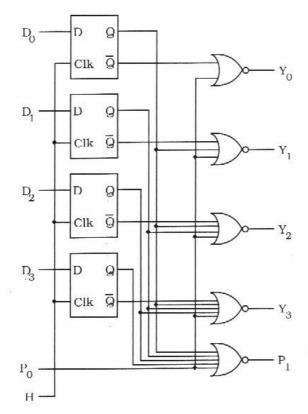
III Bascule J-K maître-esclave

La figure suivante donne le chronogramme des signaux appliqués aux entrées J, K et Clk d'une bascule J-K maître-esclave. En supposant que la bascule est dans l'état Q=0 avant l'arrivée du premier signal d'horloge, tracer le chronogramme des sorties Q et \bar{Q} (les entrées asynchrones sont dans l'état Pr = Cr = 1)

IV Bascules

- 2. Vérifier qu'une bascule de type D devient une bascule de type T si D est connectée à \bar{Q}

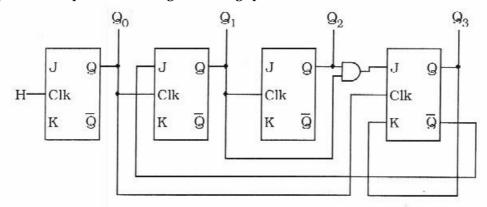
V Réalisation d'une bascule


Montrer comment réaliser une bascule A-B dont la table de vérité est donnée ci-dessous, en utilisant une bascule J-K et toute la logique nécessaire

An	B _n	Q_{n+1}	
0	0	$\overline{\mathbf{Q}_{\mathrm{n}}}$	
1	0	Qn	
0	1	1	
1	1	0	

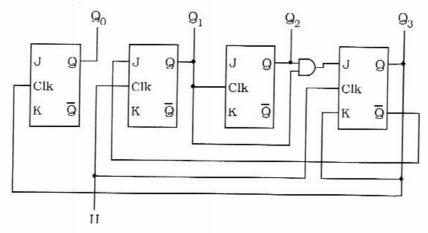
ESIL Département d'Informatique Année 2006-07 TD d'Architecture : Logique séquentielle

VI Registre prioritaire cascadable


Le schéma suivant représente un registre prioritaire cascadable de 4 bits

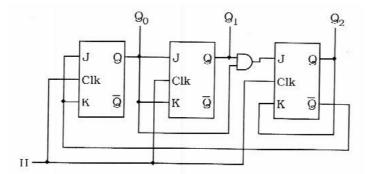
- 1. Posons : $P_0 = 0$, $D_0 = D_1 = D_3 = 0$ et $D_2 = 1$. Vérifier que $Y_2 = 1$ et que toutes les autres sorties sont à 0.
- 2. Posons : $P_0 = 0$, $D_0 = D_1 = 0$ et $D_2 = D_3 = 1$. Vérifier que $Y_2 = 1$ et que toutes les autres sorties sont à 0.
- 3. Généraliser les résultats précédents en montrant qu'une seule ligne de sortie Y_i peut être dans l'état 1, celle ci corespondant à l'entrée D_i de plus bas poids dans l'état 1.
- 4. Comment cascader deux circuits de ce type pour obtenir un registre prioritaire de 8 bits ?

VII Etude d'un compteur


Soit le compteur correspondant au diagramme logique suivant :

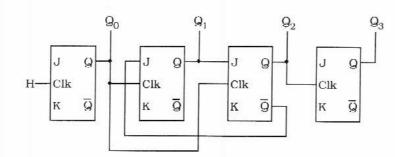
- 1. Ecrire la table de vérité des sorties Q₀, Q₁, Q₂ et Q₃, en partant de 0000 après chaque impulsion d'horloge. Quand aucune connexion n'est visible, il faut comprendre que l'entrée correspondante est toujours dans l'état 1. Vérifier qu'il s'agit d'un compteur modulo 10.
- 2. Comment peut-on utiliser ce système en compteur modulo 5 ?

VIII Etude d'un compteur


Soit le compteur asynchrone correspondant au diagramme logique suivant :

- 1. Ecrire la table de vérité des sorties Q₀, Q₁, Q₂ et Q₃, en partant de 0000 après chaque impulsion d'horloge. Quand aucune connexion n'est visible, il faut comprendre que l'entrée correspondante est toujours dans l'état 1. Vérifier qu'il s'agit d'un compteur modulo 10.
- 2. Ce compteur est dit biquinaire' (deux f ois cinq) car la sortie Q₀ ne change d'état que toutes les 5 impulsions. Votre table de vérité doit vérifier cette dénomination.

IX Etude d'un compteur


Soit le compteur synchrone correspondant au diagramme logique suivant :

- 1. Ecrire la table de vérité des sorties Q₀, Q₁ et Q₂ en partant de 000 à chaque impulsion de l'horloge.
- 2. A quoi correspond ce compteur?

X Etude d'un compteur

Soit le compteur asynchrone correspondant au diagramme logique suivant :

- 1. Ecrire, en la justifiant, la table de vérité des sorties Q₀, Q₁, Q₂ et Q₃ en partant de 0000 après chaque top d'horloge. De quel type de compteur s'agit-il ?
- 2. Comment peut-on utiliser ce système en compteur modulo 6?

XI Etude d'un compteur

Soit le compteur réalisé avec des bascule T de type maître-esclave correspondant au diagramme logique suivant

- 1. Pour chacune des bascules, exprimer l'état des entrées asynchrones Pr_i et Cr_i en fonction des entrées LOAD et E_i
 - Compléter la table de vérité suivante

ESIL Département d'Informatique Année 2006-07 TD d'Architecture : Logique séquentielle

LOAD	Ei	Pr _i	Cr _i	Q_{i}
0	0			
0	1			
1	0			
1	1			

Quelle est la fonctionnalité associée à l'entrée LOAD ? Dans quel état doit-elle être en fonctionnement normal du compteur ?

- 2. Donner l'epression logique de l'entrée T_i de chacune de ces bascules
- 3. Quel est l'état de chacune de ces entrées T_i lorsque l'entrée ENABLE du compteur est dans l'état 1 ? Qu e peut-on en conclure sur la fonctionnalité de cette entrée ENABLE ? Dans quel état doit-elle être en fonctionnement normal du compteur ?
- 4. En mode de fonctionnement normal, sur quelles transitions du signal d'horloge H se font les changements d'état du compteur ?
- 5. Lorsque l'entrée U/D est dans l'état 1," donne r la table des transitions du compteur en supposant chaque bascule initialement dans l'état 0."D e quel type de compteur s'agit-il?
- 6. Même question quand l'entrée U/D est dans l'état 0." En déduire la fonctionnali té de l'entrée U/D.
- 7. Donner l'expression logique de la sortie MaxMin. Pour quelles valeurs du compteur cette sortie est-elle dans l'état 1''? En déduire son intérêt.