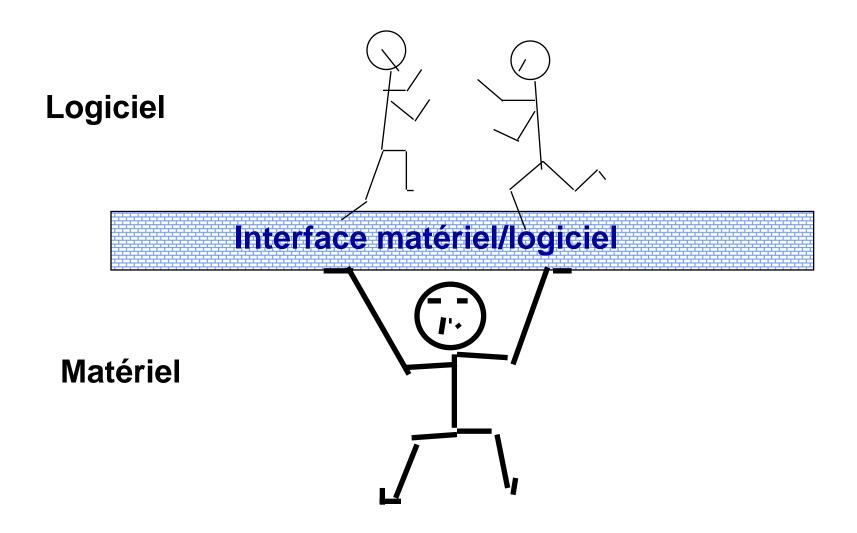
Logiciel de Base


A1-06/07

Léon Mugwaneza

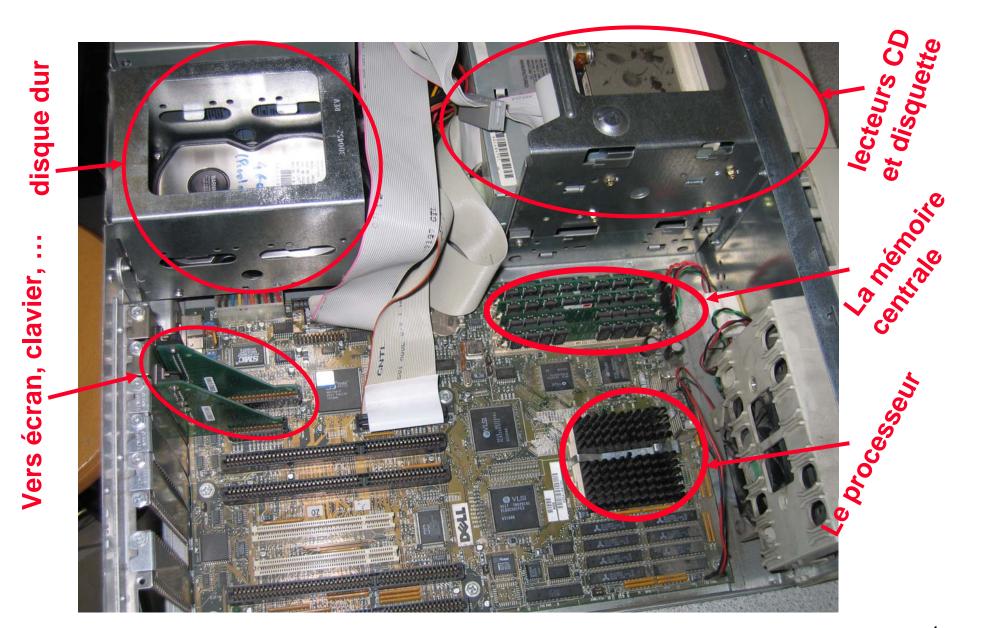
ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr

Introduction

Ordinateur = matériel + logiciel

Le matériel

• Les 5 composants d'un ordinateur


Processeur
(processor)

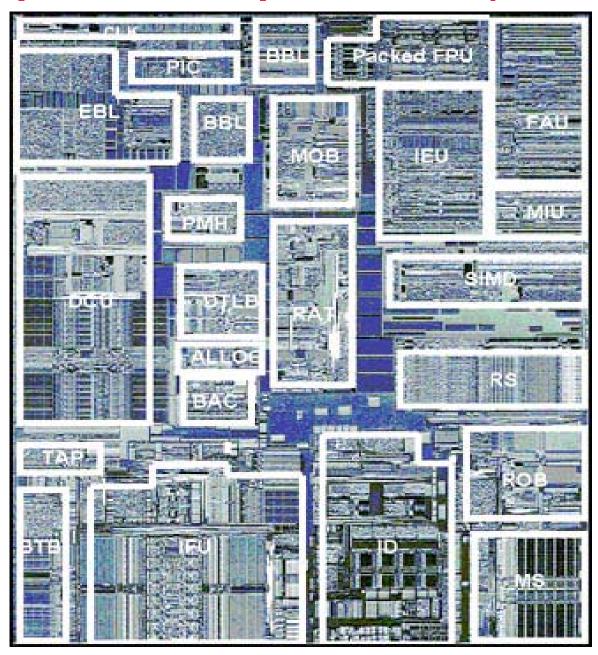
Chemin de
Contrôle
(control path)

Chemin de
données
(Datapath)

Mémoire
Centrale
(Memory)
Sorties
(Output)

Le matériel

Un processeur Pentium



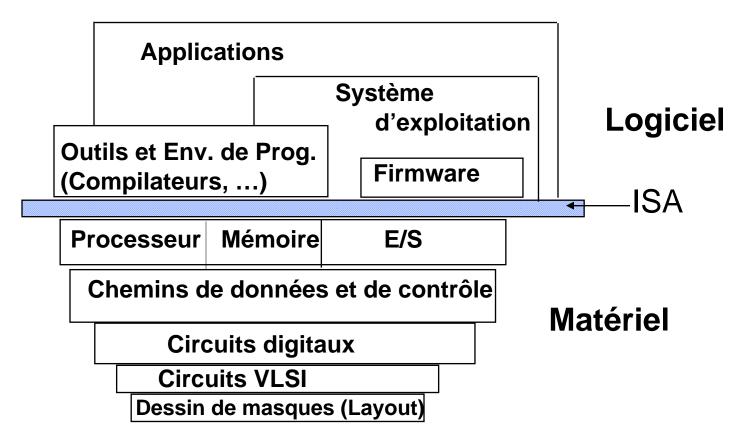
De dessus

De dessous

un processeur pentium III (de dedans)

L'ESIL, le campus, et Marseille vus du Mt Puget

Les 5 composants d'un ordinateur


- Le processeur lit les instructions et les données de la mémoire, écrit les données en mémoire
- Les unités d'entrée écrivent les données dans la mémoire
- Les unités de sortie lisent les données de la mémoire
- Le chemin de données comprend des opérateurs pour implanter le répertoire d'instructions (partie opérative)
- L'unité de contrôle génère les commandes pour la réalisation des opérations sur le chemin de données, la mémoire, les entrées et les sorties

Q: Interface offert par le matériel ?

⇒ Jeu d'instructions (ISA: Instruction Set Architecture)

(on parle aussi de Langage Machine)

"Structure" des ordinateurs

- Plusieurs niveaux d'abstraction
- Le logiciel de base est l'ensemble des programmes entre les applications et le matériel

Un ordinateur : plusieurs « couches »

Addition de 2 et 3

C=A+B;

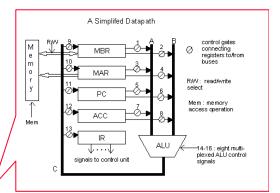
ldc num1 ldc num2 add

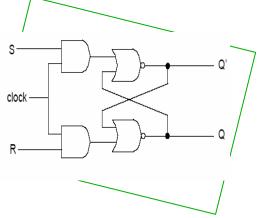
100111011110001110111111110010000 9DE3BF90 100100100001000000100000000000000 92102000 10010000000100000010000000000001 90102001 100100100000001001000000000001000 92024008 100100000000001000100000000000001 90022001 10000000101000100010000001100100 80A22064 0010010010111111111111111111111111 24BFFFFE 100100100000001001000000000001000 92024008

11000000

Application

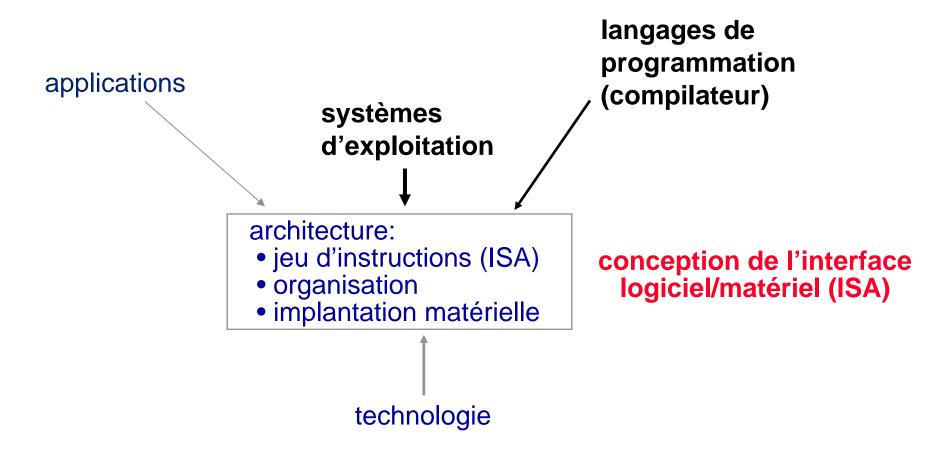
Langage haut niveau


Langage d'assemblage


Machine conventionnelle

Microarchitecture

Circuits digitaux



Le logiciel de base

- Outils pour la préparation des programmes à l'exécution
 - compilateurs (gcc, cc, gpc, javac, ...)
 - assembleurs (as, gas, nasm, spim, ...)
 - éditeurs de liens (ld, ...)
 - interpréteurs (lisp, perl, jvm, sh, ...)
- Le système d'exploitation (operating system)
 - gestion mémoire, gestion des entrées et sorties,
 - gestion des fichiers
 - partage du processeur
- Le SE assure 2 fonctions :
 - Virtualisation du matériel (cache les détails du matériel en définissant un interface de plus haut niveau, un ordinateur plus simple à utiliser)
 - la gestion, le partage et la protection des "ressources"
- Note : pour certains, le SE comprend tout ce que nous appelons ici «logiciel de base» (des fois même certaines applications)

Objectif du cours

Comprendre l'interface entre le Logiciel et le Matériel

Contenu du cours

- Préparation d'un programme pour exécution (interface compilateur)
 - Langage machine (ISA)
 - Langage d'assemblage
 - Traduction des langages de « haut niveau »
 - L'assemblage
 - L'édition des liens et le chargement
- Mécanismes à la base des systèmes d'exploitation
 - Exceptions (appels système, erreurs, interruptions)
 - Notion de processus (multiprogrammation)
 - gestion de la mémoire (mémoire virtuelle)
 - gestion des entrées/sorties
 - protection

Articulation avec les autres cours?

- Pré-requis pour le cours de logiciel de base :
 - A1 Introduction à la programmation
 - » connaissance d'un langage de haut niveau, style impératif (C, Pascal, ...)
 - A1 Introduction à l'informatique (unix)
 - » utilisation d'un système d'exploitation
 - niveau utilisateur «curieux» («conscient»)
- Le cours de logiciel de base est un pré-requis pour :
 - A1 Architecture des ordinateurs
 - » jeux d'instructions (illustration sur le MIPS)
 - A2 Compilation
 - » traduction des langages de haut niveau
 - A2 Systèmes d'exploitation
 - » mécanismes à la base des systèmes d'exploitation
 - A2 Architectures avancées
 - » jeux d'instructions (illustration sur le MIPS)

Bibliographie

- Hennessy and Patterson, « Computer Architecture & Design: The
 Hardware/Software Interface», 2nd Ed., (Morgan Kaufman Publishers, 1997)
 [MIPS simulateur spim-, Dec Vax 11] (Annexe A fournie) (1 ex. à la BU)
 - → 3^{ème} édition sortie en 2005 (le cours est illustré à en utilisant comme exemple le jeu d'instructions de l'architecture MIPS-I décrit dans l'annexe A de la 2^{ème} édition)
- Bryant and O'Hallaron, «Computer Systems: A programmer 's perspective», (prentice hall 2003) [INTEL IA32]
- Andrew Tanenbaum, «Structured Computer Organization», 4th Ed., (Prentice Hall, 1999) [utraSparc II, Sun JVM, Pentium II] (1 ex. à la BU)
- A. J. van de Goor, «Computer Architecture & Design», (Addison Wesley, 1995) [Motorola 68020 et Dec Vax 11]
- Kane and Heinrich, « MIPS RISC Architecture», (Prentice Hall, 1994)
 - plus généralement les livres de référence des processeurs
- Paul Amblard et al., « Architectures logicielles et matérielles», (Dunod, 2000)
 [Sparc, Motorola 68000]
- Andrew Tanenbaum, « Architecture de l'ordinateur», 3ème ed. (Interedition,1991) [motorola 680x0] (des exemplaires à la BU)

Organisation pratique du cours

- Cours de «logiciel de base»
 - 30 heures de cours
 - 30 heures de TD (2 groupes)
 - les fiches de TD sont données avant la séance
 - ⇒ à préparer avant la séance
 - 12 heures de TP (4 groupes)
 - 6 séances de 2h à partir du 28/11/2006
 - les fiches de TP seront données avant la séance
 - Evaluation :
 - 1 examen écrit à la fin du cours (fin Janvier 2007)
 - **ECTS: 5**
 - des points de participation (rajoutés à la note d'examen)
 - passage volontaire au tableau en TD
 - réponses aux questions «rémunérées» (en cours, TD, TP)